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JOINT PROBABILITY DENSITY FUNCTION OF SELECTED 
ORDER STATISTICS AND THE SUM OF THE REMAINDER 

AS APPLIED TO ARBITRARY INDEPENDENT RANDOM VARIABLES 

INTRODUCTION 

Detection and location of weak signals in random noise is frequently accomplished by the 
ordering of the random variables (RVs) in a measured dataset, followed by an investigation of 
the locations and statistics of several of the largest RVs under consideration. Also of interest are 
the remaining smaller RVs in the dataset, which can be used to estimate the background noise 
level and to form a basis for normalization, thereby realizing a constant false alarm processor. 

In this study, the original dataset {x„} is composed of iV independent RVs with arbitrary 

probability density functions (PDFs) {;?„(x)}. This dataset is ordered into another dataset of 

dependent RVs, each with a different PDF. From this latter set, the M-1 largest RVs are 
selected. The sum of the remaining N+\-M RVs is then computed, giving a total of M 
dependent RVs. The joint M-th order PDF of these M dependent RVs is one of the quantities of 
interest. 

For convenience, the following notation is used. The largest RV in set{x„} is denoted by 

Zi, the second-largest by Zj,..., the M-1 largest by z^_i, and the sum of the remaining RVs by 

x^. Thus, the first M-1 RVs satisfy the restrictions that Zj > Zj > • • • > z^-x > while the last RV 

must obviously satisfy the restriction that ZJ^^ < (A^^ +1 - M) z^^j. 

To solve for the statistics of RVs{z„}, general M, a series of simpler problems will be 
solved starting with M= 2, that is, the largest RV and the sum of the remainder. By the time M 
increases to 5, the general pattern will be obvious and may be extended to a larger M of interest. 
The end result is a single one-dimensional contour integral for the joint PDF of{z„ }, which can 

easily and accurately be numerically evaluated by moving the contour of integration to 
approximately pass through the real saddlepoint of the integrand. 

For later use, it is convenient to define the auxiliary function 

z 

c„ (z, X) =  \dx exp(A x) p„ (x) for « = 1: JV, 
-00 

which is a mixture of a cumulative distribution function (CDF) and a moment-generating 
function (MGF). That is, c„ (z,0) is the CDF corresponding to PDF p„ (x), while c„ i+co, A) is the 

corresponding MGF. Variable z is real, while/I can be complex. Several useful examples of the 
c„(z,/l) function are Hsted in appendix A of reference 1. 



DERIVATIONS OF JOINT PROBABILITY DENSITY FUNCTIONS 

The method for deriving joint PDFs is based very heavily on reference 1, pages 5 through 
15. The notation introduced there will also be used here. The reader is advised to review that 
material before proceeding. The major difference here is that each RV now has different 
statistics. Specifically, the PDF of RV x„ is p„ {x) for« = 1 :A^, instead of a common PDF p{x) 

used earlier. The CDF of RVx„ is c„(x), while its exceedance distribution function (EDF) is 

e„(x). The RVs{x„}, n=\:N, are independent of each other. 

LARGEST RANDOM VARIABLE 

The probability that RV x„, is the largest RV and that it is in the interval (z,, z, + cfe,) is 

N 

(1) 

Thus, the probability that RV x,„ is the largest RV is 

Qim) = J^z, p„, (z,) n c„ (z,) = jdz ^^ P{z,0)  for m = \:N, 
n=l                                     C„, (2) 

(2) 

where the product of auxiliary functions is 

P(z,/l) = llc„(z,A). (3) 

The sum of all the {Qim)} probabilities is unity: 

(4) 

As an example, if all the RVs have exponential PDFs, namely. 

Pn (x) = a„ exp(-fl„ x) U(x),   c„ {x) = [1 - exp(-a„ x)] U(x) for n = \:N, (5) 

then it follows, from equation (2), that 

Qim) = \dz a„, expi-a„, z)Yl{l-exp(-a„ z)}  for w = 1: A^. 
0                                              n=\ 

2 

(6) 



Although these integrals can be evaluated in closed form, they are probably most efficiently 
accomplished by numerical integration, especially for large A^, once {a„} are specified 

numerically. For other than exponential PDFs, the integrals in equation (2) will have to be done 
numerically. 

Given that RV z, = x„, is the largest RV, the conditional PDF of RV x„,«9^ m, at argument x, 

when z j has value z,, is 

PMU(Z,-X). (7) 

The corresponding conditional MGF is 

]dx PM exp(Ax) = ^^^^^i^, n ^ m. (8) 
i    c„(Zi) c„(z,) 

Therefore, the conditional PDF of the sumZj of the remaining RVs (other thanx„), at argument 

Zj, given thatz, = Zj, is available from a Bromwich contour integral as 

-^{dAcxp(-Az,)fl'-^^. (9) 
i2n: I tr  c„(Zi) 

Finally, the product of equations (1) and (9) and dz2 is 

dz, dz, pjz,)^ \dAcxp(-Az2)flc„(z„A), (10) 

which is the probability thatZj (= x„) is the largest RV, that it lies in the interval (Zj, z, + Jz,), 

and that the sumzj lies in the interval (z,,z, + dz,). That is, 

q2(m,z„Z2)^p^iz,)^ ldAtxp(-Az2)Ylc„(z„A) iorm = l:N (11) 
/2/r c "=' 

is the combined probability (thatx„ is the largest RV) and joint PDF ofzj (= x„ ) andzj (which 

is the sum of the remaining RVs). 

Let A = iy in equation (11) and integrate onzjto get 

N N 

{dz, q2(m,z„Z2) = p„,(^,) \dy S{y)Ylc„(z^,iy) = p„,(z,)YlcM)- (12) 



Then, by use of equation (2), an additional integral yields 

JJc/z, dz^ q^ (m, z,, Zj) = Qim) for m = \:N. (13) 

That is, functiongr2(/w,z,,Z2) in equation (11) is not a true PDF because its area is less than 1. 
However, the conditional PDF of z,, z^, given that x„, is the largest RV, is 

1 1    r '^ 
q, (z,, z^ I w) = —— p„, (z,) —- \dX exp(-A z,) f] <^« (^P ^\ 

(JyTn) ILK ^. -^ ^ 
(14) 

which is a true PDF for all w = 1 -.N. 

Alternatively, the sum of equation (11) over all m. 

"'=1 '■^^ c m^]        7=r 

" If w w 
9,(z,,z,) = 2.92('«.^P^2) = —pexp(-Az,)2;p„,(z,)[]c„(z,,;i), (15) 

n*m 

is a true PDF, namely, the unconditional joint PDF of the largest RVz, and the sum of the 
remaining RVsz2. Using equation (3), this quantity can be expressed as 

^2(^i^^2) = ^ jdAcxp(-Az,) Piz„X)f^-^f^, (16) 

which avoids the nested two-dimensional operation in equation (15) in favor of a one- 
dimensional product and a one-dimensional sum, both of which depend on the variable of 
integration/I. Thisjoint PDF iszero forzj >(iV-l)z, because RVzj <(A^-l)z, is always 
true. An alternative argument is given in equation (16) of reference 1; it uses the fact 
that c„ (z, A) is analytic in A for Re(/l) > A„, a problem-dependent critical value. 

As an alternative check, if all the RVs{x„} are identically distributed, equation (15) reduces 
to equation (15) of reference 1. 

TWO LARGEST RANDOM VARIABLES 

The probability that RV x,„ is the largest RV, that x^ is the second-largest RV, that x,„ is in 

interval (z,, z, + dz^), and that x^ is in interval {z^, z^ + dz^), z, > Zj, is 

A' 

^^1 dz^ P,M)Pki^2) n^«(^2)^(^1 -z^), m^k. (17) 
n=l 

n*m,k 



Then, the probabiUty thatx„ is the largest RV and thatx^ is the second-largest RV is best 

obtained by integrating equation (17) over Zj first: 

n*mjc 

= {dz, e^iz,) p,iz,) flc„{z,) (18) 

\dzP{zfi)   '"^^^'^^   form^k, m,k = \:N. 
•' c^(z)c,(z) 

A single integral suffices to determine this probability. The sum of all the {g(»7, A:)} probabilities 
form^ A: is unity. 

For the example of exponential RVs in equation (5), the integral in equation (18) takes the 
form 

00 N 

Q(m,k) = \dz a, exp[-(a„ + a,) z] J^(1 - exp(-a„ z)}   for m^k. (19) 
0 "=i 

n^m,k 

Again, although possible analytically, numerical integration is the most practical method. 

Given that RVz, = x„ is the largest RV and thatZ2 = x^ is the second-largest RV, the 
conditional PDF ofx„, « ^ m,k, at arguments, when Zjhas valueZjandz2has valueZj, 

withZ] > Z2, is 

PAX) U{z^-x). (20) 
Cni^l) 

The corresponding conditional MGF is 

UAWexp(Ax) = ^^^^^^,   n^rnX (21) 
i    c„{z^) c„(z^) 

The conditional PDF of the sumz, of the remaining RVs (other thanx„,x J at argument Z3, 

giventhatZi = Zj andzj = ZjA^ 

J-JjAexp(-iz3)n^^. (22) 
i2^ i «=i    c„(z2) 

n*m,k 



The product of equations (17) and (22) anddz^is 

1    f '^ 
dz, dz, dz, p„,(z,) p,(z,) —- jdX exp(-Az,) f]c„(z,,A) U{z, -z,), m^k, (23) 

ntm,k 

which is the probability thatx„, is the largest RV, thatx^ is the second-largest RV, thatz, = x„ 

lies in (z,, z, + cfe,), that z2 = x^ lies in (z^, z^ + dz^), and that sum Z3 lies in (z^, z^ + dz^). That is, 
foxm^k, 

1    f '^ 
q,{m,k,z„z„z,)^ U(z, -z,) p„,(z,) p,(z,) —- jdA exp(-AZ3) JJc„(z,,A) (24) 

nfm,k 

is the combined probability (thatx,,, is the largest RV and thatx^ is the second-largest RV) and 

joint PDF of z, (= x,„), Zj (= x^), and Z3 (the sum of the remaining RVs). 

Let A = iy\n equation (24) and integrate on Zj to get 

f ^ 
]dz, q,{mXzx,z^,z,) = U{z,-z^) p„Xz,) P,{Z2) Wc^izj). (25) 

«=1 

Then, by reference to equations (17) and (18), the remaining two integrals yield 

JJJjz, dz^ dz^ q^(w,k,z^,z^,z^) = Q(m,k), m^k. (26) 

That is, function q^(m,k,z^,Z2,z^) in equation (24) is not a true PDF because its area is less than 

1. However, the conditional PDF ofz,,Z2,Z3, g/ve« thatz,,, is the largest RV and thatz^is the 
second-largest RV, is 

q,{z,,z^,z,\m,k) = -——-U{z,-z^) p,,Xz,) p,iz^) 
Q{m,k) 

1    f A (27) 
X--Jc/Aexp(-Az3)fIc„(z2,A), 

n*m,k 

which is a true PDF for d\\m^k,m,k = \ -.N. 



Alternatively, the sum of equation (24) over aWm * k, 

N 

q^(z^,z^,Zj)= Yjq^{m,k,z^,z^,z^) 
m,k=\ 

(28) 
1 N N N 

= U{z,-z^)—- J^Aexp(-Az3)X/^.(2i)ZA(^2) Yl^ni^l^^)^ 

k*m n^m,k 

is a true PDF, namely, the unconditional PDF of the largest RV Zj, the second-largest RV Z2, and 

the sum of the remaining RVsZj. By using equation (3), and adding and subtracting the A: = w 

term in the inner sum, this quantity can be expressed as 

q,(z„z„z,) = U(z, -z,)^ ldAcxp(-Az,)P(z„A)iS, S, -S,), (29) 
i2^ ^ 

where one-dimensional sums 

N C   _V    PM) O    _f    PA^2) S    _Y Pn(^:) Pn(^2) (30) 

Equation (29) is much more advantageous computationally than equation (28), which requires a 
nested three-dimensional sum and product. Joint PDF q^ (Zj ,22,23) is zero for Zj>(N- 2) z^ 

because RV Z3 < (A'^ - 2) Z2 is always true. 

As a check, if all the RVs{x„} are identically distributed, the resuh in equation (28) reduces 

to 

N(N-l)piz^)p(z2)— \dAcxpi-Az,)ciz„Ay-'^ U{z, -z^), (31) 
/2;r I 

which is equation (35) of reference 1. Also, by letting A = iy in equation (31) and integrating on 

Z3, there follows 

N(N-\)p(z,)p(z,)c{z,f-' U(z,-z,). (32) 

An additional integral on Zj yields 

NiN-\)p{z,) ]dz, p(z,)c(z,f-'=Np(z,)c(zy-' ^'t'^'''^'' ^^^^ 
-co ^ 

where the step function U(z^ - Z2) takes effect. Finally, integrating on z^ yields 1. 



THREE LARGEST RANDOM VARIABLES 

The probability that RV x,„ is the largest RV and lies in interval (z,, z, + rfz,), that x^ is the 

second-largest RV and lies 'm{z^,z^ + dz^), and thatx^ is the third-largest RV and lies in 

(Z3, Z3 + cfej) ,with z, > Z2 > Z3, is 

N 

dz, dz, dz, p,„ (z,) p, (z,) pj (Z3)  H c„ (Z3) f/(z, - Z2) U{z^ - Z3) (34) 

foTm,kJ all unequal. Then, the probability thatx,,, is the largest RV, thatx^, is the second-largest 

RV, and that x^ is the third-largest RV is obtained by integrating equation (34) first on z, to obtain 

00 AT CO 

Q(m,k,j)= ]dz,p^{z,) n {c„{z,)}  \dz,p,{z,)ejz,). (35) 
n*m,k,j 

At this point, in general, the remaining double integral cannot be reduced any further, although 
the sum of all the {Q{m, k, j)} over all unequal w, k, j must be unity. However, for the example of 
exponential RVs in equation (5), the z^ integral can be carried out to yield 

Q(m,k, j) = —-^ jdz exp[-(a,„ +a,+ a^) z]  [^{1 -exp(-fl„ z)}. (36) 

n*m,kj 

For given numerical values of {a„}, this single integral can be easily evaluated for any m,k,j of 
interest. 

For general statistics of RVs {x„}, and by a similar procedure to that presented in equations 

(20) through (24), the combined probability and joint PDF of z, (= x,„), z^ (= x^), Z3 (= x^),and 

Z4 (the sum of the remaining RVs) is 

q,{m,k,j,z„z„z„z,) = U{z, -z,)Uiz,-z,) p„,(z,) p,(z,) p^{z,) 

X -- \dA exp(-A Z4)  f] c„ (Z3, X)  for m, k, j all unequal. ^^^^ 

n*m,k,i 

Function^4 is zero for Z4 >(7V-3)z3 because RVz^ <(iV-3)z3 is always true. Equation (37) 
can be evaluated numerically with moderate computational effort. 

The sum of equation (37) over all unequal w. A:, y is the unconditional joint PDF of RVs 
z,,Zj,Z3, and Z4 and can be expressed as 



q,(z,,z„z,,z,) = U(z, -z,) U(z, - Z3) 4" 1^^ ^""P^"-^''^ ^^'^'^^ ^^' ^^^^ i2;r ^ 

where 

By adding and subtracting the missing terms in each sum, starting with the innermost sum and 
expanding out the resulting expressions, the following form is obtained: 

T,=S, S^ S, -S, S, -S, S, -S, S, +23^, (40) 

where 

(41) n n n n 

'S'5=Z««^«' '^6=Z*«^"' S-j=Y.a„b„c„, 
n n n 

and 

a  =^A^   b  = P"^"'^ , c  =-A(!3)_  for„ = l:Ar. (42) 
"       C„(Z3,A)'      "       C„(Z3,;i)'      "       C„(Z3,1) 

Whereas direct evaluation of equation (39) would require a triple-nested sum, requiring a number 
of operations of the order of A^^, equation (40) requires only the seven one-dimensional sums m 

equation (41), each of size N. 

The PDF q^ (z,, Z2, Z3, z^) in equation (38) is zero for Z4 > (iV - 3) Z3 because RV 

Z4 < (iV - 3) Z3 is always true. 



FOUR LARGEST RANDOM VARIABLES 

The probability that RV x,„ is the largest RV and lies in interval (z,, z, + dz,), that x^ is the 
second-largest RV and lies in (z^, z^ + dz^), that x^ is the third-largest RV and lies in 

(Zj, Zj + cfej), and that x, is the fourth-largest RV and lies in (z^, z^ + dz^), where 
Z, >Z2 >Z3 >Z4,is 

N 
dz, dz, dz, dz, p„, (z,) p, (z,) pj (z,) p, (z,) II c„ (z,) f/(z, - z,) U{z, - z,) Uiz, - z,)  (43) 

n=\ 

for m,k,j,iall unequal. Then, the probability thatx„, is the largest RV, thatx^ is the second- 

largest RV, thatx^ is the third-largest RV, and thatx, is the fourth-largest RV is obtained by 

integrating equation (43) first on z, to obtain 

°0 Af 00 00 

Q(m,k,j,i)= jdz, PXZ,)   fl   {c„{z,)} jdz, p^{z,) \dz, p,(z,)ejz,). (44) 
n*m,k,j,i '^ 

At this point, in general, the remaining triple integral cannot be reduced any further, although the 
sum of all the {Q{m, k, j, /)} over all unequal m, k, j, i must be unity. However, for the example of 
exponential RVs in equation (5), the z^ and z^ integrals can be carried out to yield 

(45) 
X \dz exp[-(fl„, + a, + Oj +ajz]   fj {1 - exp(-a„ z)}. 

For given numerical values of{a„},this single integral can be easily evaluated for any m,k,j,i of 
interest. 

For general statistics of RVs {xj, and using a procedure similar to that presented in 
equations (20) through (24), the combined probability and joint PDF of 
^i (= x,„), Z2 (= ^kX Z3 (= XyX Z4 (= X,), andzj (the sum of the remaining RVs) is 

q, {m, k, j, i, z„z^,z„z„z,) = U{z,-z^)U{z^-z^) U{z^ - z,) p„, {z,) p, (z^) 

1 
pM)p,(z,)—-{dAtxp(-Az,)   tlc„(z„A) (46) 

for m,k,j,i all unequal. 

n*m,k,j.i 

10 



Function^5 is zero forzj > (A^ - 4) z^ because RVzj < (A^ - 4) z^ is always true. Equation (46) 

can be evaluated numerically with moderate computational effort. 

The sum of equation (46) over all unequal m, A:, y, / is the unconditional joint PDF of RVs 

z,,Z2,Z3,Z4,andz5 and is given by 

q,{z„...,z,)^ U{z, -z,)U(z, -z,)U{z, -z,) -^ \dX exp(-^Z5) P{z„X) T„ (47) 
HK c 

where, after expansion and manipulation, the fourth-order sum for 7; can be expressed as 

T,=nz„z„z„z„X) = S, S, S, S,+2(S, S,,+S, S,,+S, S,,+S, S,,) 

+ S, S,o+S, S,+S, S, -S, (S, S,o+S, S,+S, S,)-S, (S, S,+S, S,) (48) 

-S^ S^ iS'5-6S'i5, 

and the 15 sums are given by 

n n n n 

Ss=^a„b„, S,=Y,ci„c„, ST=J^a„d„, S,=Y,K^n, 
n n n n ^^Qf^ 

S,=Y.Kd„, S,,=Y,c„d„, S,,=J^a„b„c„, S,, =J^a„b„d„, 
n n n n 

n n n 

with 

,   PA^d     ^  ^  PS^2)     ,  ^MhL^ d  =-P^^^^   ioxn = \:N. (50) 
'^" c„{z„xy " csz,,xy " c„{z„xy - C„(Z„A) 

Again, the simplification afforded by form (48) is a considerable improvement on the initial 
quadruple nested sum encountered for 7; in equation (47). All 15 sums in equation (49) are of 

size N. An additional shortcut is available by defining e„ = a„ 6„ and/„ = c„ d^ for « = 1 :A^in 

all the sums in equation (49). 

The PDF ^5 (Zi, Zj, Z3, Z4, z,) in equation (47) is zero for z,>{N- 4) z^ because RV 

Z5 < (A'^ - 4)z4 is always true. 
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Ml LARGEST RANDOM VARIABLES 

Let x„,_ = z, be the largest RV, x,„^ = z^ be the second-largest RV, and x„,^^ ^ = z^,_^ be the 

(M-l)-th-largest RV. Also, let ZJ^, be the sum of the remaining RVs. Then, 
^A/ <(A^ + l-M)Zjj,_, is always true. 

Observation of equation (46) reveals that the combined probability and joint PDF of the M 
RVs {z„,}, m=l:M, is given by 

M-2 M-\ 

(51) 
1    f /^'^' 

For this quantity to be nonzero, it is required that 

z, > Z2 > • • • > ^A/.i and z,, <(N + \-M) z,,_,. (52) 

RECURSION FOR m -TH ORDER SUM 

As A/-1, the number of the largest RVs of interest, increases, the initial form for the nested 
sumr„, s T{z^,...,z,„, A), m = M-\, becomes impractical computationally. Also, the expansion 

and simplification procedure leading to compact equations (40) and (48) for /w = 3 and w = 4, 
respectively, becomes very tedious and unwieldy. A method around these limitations is to 
develop a recursion procedure for getting r„, directly fromT,,, ,. 

The essentials of this derivation begin with the definition 

N N N N N 

A,(a,b)^J^a„ X^" =Z«« H^n, -£«>« =sum(a)*sumib)-sum(a.*b). (53) 
n=l m=l n=I m=! n=l 

Suppose a program is written to perform this task on sequences {a„} and {bj. Now, consider the 
third-order nested sum 

N N N 

A,(a,b,c)^Y,a„ ^b„,  J]c,. (54) 
n=! m=l i=l 

m#H        k*m,n 
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Develop the inner sum according to 

-c„-c^ 
(55) 

N N ^ N ^ 

n=l m=l \k=l ) 
m*n 

= sum(c) * A, (a, b) - A^ {a. *c,b)- 4 (a, b. * c), 

where the notation introduced in equation (53) has been used. Thus, A^ can be evaluated by three 

calls to function A^. It follows in a similar fashion that 

N N N N 

A,ia,b,c,d) = Y,a„^b„ ^ c, J^dj 
n=l        m=I k=\ y=l (56) 

m*n       k*m,n      j*k,m,n 

= sum{d)* A,ia,b,c)- A,(a* d,b,c)- A,(a,b* d,c)- A^ia,b,c* d). 

That is, in general, A„ can be evaluated by m calls to ^„_i, with appropriate combinations of 

arguments. 

It should be observed that the use of the recursive approach is not as economical as having 
explicit expressions for the high-order sums of interest. For example, the use of equation (55) 
employs 10 summations, whereas the direct use of equation (40) requires that only seven sums 
be evaluated. (Sums ^1,52, and S^ are evaluated twice in equation (55).) This loss of economy is 

present at every level and gets worse as m increases. Also, the amount of computational effort 
increases noticeably with m. In fact, the number of summations that must be evaluated at level m 
is 2"" -1; observe the results in equations (30), (41), and (49), for example. This additional 
effort serves to effectively limit the level to which the procedure can be carried out; that is, 
evaluation of the joint PDF of the m largest RVs and the sum of the remainder is not 
computationally feasible for very large m. Additional effort on extending results like equations 
(48) through (50) would probably be very worthwhile, at least for w = 5 or 6. For example, at 
m = 5, the number of different sums to be evaluated is 2' -1 = 31, and the number of different 

types of terms inTj is 52. Namely, 

T, = 24 0(5) - 6 Q{4,1) - 2 Q{3,2) + 2 2(3,1,1) + 2(2,2,1) - 2(2,1,1,1) + 2(14,1,1,1), (57) 

where 
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Qi5)-Y,abcde, Iterm, 

Qi4,\)-J^abcdY,e + ---, 5terms, 

Qi3,2) = Y,^bcY,de + ---, lOterms, 

Q(3,\,\) = Y,abcY,dY,e + -,  lOterms, (58) 

Q{2,2,\) = ^abY,cd'^e + -, ISterms, 

e(2,l,l,l) = X«6lcX^5;e + -,  lOterms, 

e(l,l,l,l,l) = X«S^Z^I^Z^'  Iterm. 

SECOND-LARGEST RANDOM VARIABLE 

The probability thatx^ is the largest RV, thatx^ is the second-largest RV, and that 

x^€(z,,z,+cfe,)is 

A' 

M —I 

(59) 

Given that x^ = z,, the conditional PDF of x^ is^^^ U{x - z,), while that for x ,rj^ j,k, is 

(/(z,    x). The corresponding conditional MGF ofx. is 

(60) 

and that of x„ is ' 

(61) 
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The conditional MFG ofz2 = x^ + 2^x„ is 

euizx)   il c„(2,) 

(63) 

The conditional PDF ofZj at argumentz^, givenz, = x^ has value z^, is 

z2;r J "^^ e,{z,)   U  c„(z,) 

Finally, the product of equations (59) and (63) andcfej is 

cfei ^Z2 /?, (z,) -— [dA exp(-A z^) e, (z,, 1) H '^« (^i >^l ^^ J^ (64) 
/2;?r ^ „=i 

which is the probability thatx^ is the largest RV, thatx^ is the second-largest RV, that 

Zi =x^ e(zi,z, +cfe,),andthatZ2 G(22'^2 +^^2)- That is, 

1 ^ 
q,ij,k,z„z,) = pj(z,)^— {dAexp{-Az,)e,(z„A) llc„{z„A), k^j, (65) 

UTT ^ „=1 

is the combined probability (thatx^ is the largest RV and thatx^ is the second-largest RV) and 

joint PDF ofzpthe second-largest RV, and z 2, the sum of the remaining RVs. 

The sum of equation (65) over k. 

1 N N 

q,U,z„z,) = pj(zi) -—- {dA exp(-Az,)J^e,(z,, A) Hc« (^1'^)' 
IZTT i k=\ n=l 

(66) 

k^j n*J,k 

is the combined probability (thatx^ is the second-largest RV) and joint PDF ofzj (= x^) andz2 

(the sum of the remaining RVs). This quantity can be written as 

,,(;,z„z,) = p,(z,)^ pAexpMz,)^^i;^i^ fory = l:iV. (67) 
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Then, the sum of equation (67) overy, 

q,{2,,z,) = j- jc/Aexp(-Az,)P(z„A)2;^^X^4^' (^8) 
k*j 

is the overall joint PDF of the second-largest RVz, and the sum of the remaining RVs i^. This 
last quantity can be expressed alternatively as 

^2 (^" ^2) = ;|^ 1^^ exp(-A Zj) P{z,, X) (5, S, - S,), (69) 

where one-dimensional sums 

„=, c„(z,,/t) „=, c„(Z|,/l) „^,     C„{Z^,A) 

SUMMARY 

The joint statistics of M-1 ordered random variables and the sum of the remaining random 
variables have been derived for several values of low-order M The original random variables, 
prior to ordering, are independent and can have arbitrary, different probability density functions. 
Results for the joint probability density function of the Mrandom variables of interest, as well as 
a combined probability and joint probability density function, have been derived in the form of a 
single contour integral in the moment-generating domain. Numerical evaluation of this contour 
integral is most easily accomplished by approximately locating the real saddlepoint of the 
integrand and moving the Bromwich contour so as to pass through this point. However, instead 
of resorting to a saddlepoint approximation, high accuracy in the evaluation of the joint 
probability density function is achievable by numerical integration along this displaced contour. 

A recursive procedure has been developed for evaluating a nested sum that occurs in the 
evaluation of the joint probability density function. For values of A/in the range of 6 to 10, this 
is a very helpful numerical aid. For much larger values of M, execution time increases very 
rapidly and becomes a significant limitation. 
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